The neutrino observatory LENA Jürgen Winter Lehrstuhl für experimentelle Astroteilchenphysik E15 juergen.winter@ph.tum.de - LENA design - PMTs and Readout Electronics - Liquid Scintillator - Physics goals: from low to high-E physics - Summary # **LENA Design** #### Cavern Height 115 m Diameter 50 m - Shielding of cosmic rays with 4000 m.w.e. - Egg-shaped for increased stability #### Steel Tank Height 100 m Diameter 30 m ~65,000 PMTs (8") with Winston Cones (1.75 x) ### **Nylon Vessel** between buffer and target volume # **LENA Design** #### Cavern Muon Veto plastic scintillator panels #### Heigh Diam **Detector properties** terenkov .000 packground - Shielding rays with - Good Energy Resolution - ~ 200 photoelectrons per MeV - Egg-sha increase - **Low Detection Threshold** Steel T ~200 keV (due to intrinsic ¹⁴C background) Heid Diar **Excellent Background Reduction** - coincidence signals (inverse beta decay) - pulse shape discrimination ~65,000 with Win (1.75 x) - Radiopurity - → experience from Borexino Self-shielding monolithic detector shield its central volume against external backgrounds Nylon V between target volume 50 kt of organic liquid scintillator ume rganic liquid ternal # LAGUNA site study Boulby, UK Lombardi ### LAGUNA site study (Large Apparatus for Grand Unification and Neutrino Astronomy) - EU funded FP7 study - 3 detectors, 7 locations ### Possible LENA locations (>4 km.w.e) - → Pyhäsalmi (FIN) - → Fréjus (F) #### Dedicated talks: - → Site comparison: W. Trzaska - → Geotechn. studies @ Pyhäsalmi: G. Nuijten # LENA tank design ### Steel - i. Conventional Steel Tank: well known technology, but expensive - ii.Sandwich Steel Tank: cost effective, yet mechanically challenging #### Concrete - bigger tank due to internal radioactivity → more LS, bigger excavation - Cheaper than steel and more stable - → in total not more expensive - i. Sandwich Concrete Tank: well known technology, yet slow to build ii. Hollow Core Concrete Tank: mechanically strong, little known technology # Detector performance ### **Scintillator** - Decay Times - Light Yield - Attenuation length - Scattering lenght - Radiopurity ### **Photosensors** - Photo detection efficiency - Spectral response - Optical coverage - Granularity • ### **Electronics** - Dynamic Range - Trigger - Sampling • **Monte Carlo** simulations Physics program and potential ### Photosensors - → See talk this afternoon - Good energy resolution - ~30% optical coverage - 3000m² effective photosensitive area - Light yield ≥ 200 pe/MeV - Good timing resolution | PMT Ø | # PMTs in ID | | | |-------|------------------------|----------------------------|--| | | No light concentrators | Light concentrators (1.75) | | | 5" | 329,300 | 188,200 | | | 8" | 110400 | 63,000 | | | 10" | 82,300 | 47,000 | | | 20" | 21,600 | 12,300 | | # PMT testing in Garching and Borexino test stand @LNGS - → characteristics of possible PMTs - afterpulses - time jitter... - collaborations with - MEMPHYS (PICS, PMm2), KM3Net - INFN Milano, LNGS, Tübingen - ETEL, Hamamatsu PMTs are probably the only photo sensor type which can fulfill all requirement classes ### Electronics - PMTs as sensors - Requirements - Large dynamic range: single p.e. few 100 p.e. per channel - ns timing (1-2 GS/s) - Zero dead time → sufficient onboard memory - 2 solutions investigated - 1. FADC for all PMTs: expensive - Customised ASIC boards for small PMT arrays: investigated by Pmm2 group for MEMPHYS detector # Liquid Scintillator → Mixture of organic solvent + fluor (wavelength shifter) # Properties investigated in small scale experiments - Light yield - Attenuation length - Scattering length - Refraction index - Gamma Quenching - Proton Quenching - Fluorescence Decay Constants - Scintillation Spectra → input for LENA MC to investigate physics potential #### Solvents: - LAB - PXE - DIN, Tetradecane (non-scint.) #### Fluor: - · PPO - PMP - pTP - bisMSB # Scintillator properties #### **Environmental** issues - radiopurity - flammability - toxity | Solvents | Wave | length shifters | Y [%] | n_1 [%] | $\tau_1 [\mathrm{ns}]$ | |----------|-----------------------------------|-------------------|-----------------|-----------------|------------------------| | | $1^{\rm st}$ | 2 nd | 258 | | 268 269 | | PXE + | 2 g/ℓ PMP | - | 79.1 ± 3.1 | 95.9 ± 0.02 | 4.15 ± 0.02 | | + | 2 g/ℓ PPO | + 20 mg/ℓ Bis-MSB | 102.0 ± 3.3 | 85.3 ± 1.4 | 2.61 ± 0.05 | | LAB + | $2 g/\ell PMP$ | - | 83.9 ± 3.0 | 85.1 ± 0.9 | 8.53 ± 0.15 | | + | 2 g/ℓ PPO | + 20 mg/ℓ Bis-MSB | 99.7 ± 3.2 | 77.7 ± 0.8 | 5.21 ± 0.005 | | DIN + | $1.5\mathrm{g}/\ell~\mathrm{PPO}$ | <u> </u> | _ | 86.2 ± 0.2 | 6.95 ± 0.02 | PXEu - largest absorption length - good light yield, timing - good availability # LENA Physics goals overview ### Low-Energy Neutrino Physics - Galactic Supernova Neutrinos - Diffuse SN Background Neutrinos - Solar Neutrinos - Geoneutrinos - Short-baseline Neutrino Oscillations - Neutrinos from DM annihilation ### GeV Physics - Nucleon Decay Search - Long Baseline Neutrino Beams - Atmospheric Neutrinos ## Supernova Neutrinos - → Neutrinos from a Galactic Core-Collapse SN - → Neutrinos from Diffuse SN Background ### SN physics - Galactic SN v - high-statistic measurement - determine detailed 'light curves' and spectra for each flavour - Neutronization burst observation - average \overline{v}_e spectrum, exclusion of extreme SN scenarios - first observation #### Neutrino properties • Matter effects on neutrino oscillations in SN envelope (MSW, collective osc.) and Earth $\rightarrow \theta_{13}$, neutrino mass hierarchy ### Galactic SN Neutrinos - Core collapse SN - → neutronization (10ms) - v_e : ~40 from ve, ~90 from vp scattering - → accretion (100ms) - Largest spectral differences between flavours - all flavours, thermal spectra - Rate calculations assuming - M ~ 8 M_{solar} progenitor - 10 kpc distance - Luminsosity equipartition ### Galactic SN Neutrinos - Golden Channel: inverse beta decay $\geq 10,000$ events $\bar{v}_e + p \rightarrow n + e^+$ - Additional: elastic scattering off protons, electrons, and ¹²C (NC and CC) - → all flavours accessible! 6 different reaction channels allowing for time-resolved flux measurement and spectroscopy | | | | Events for <e> values</e> | | | |---|------|------------------|---------------------------|---------------------|---------| | Reaction | Туре | E _{thr} | 12 MeV | 14 MeV | 16MeV | | $\bar{v_e}$ +p \rightarrow n + e ⁺ | СС | 1.8 MeV | 1.4 10 ⁴ | 1.6 104 | 1.9 104 | | $v+p \rightarrow v+p$ | NC | 2 MeV | 4.1 10 ³ | 6.9 10 ³ | 1.0 104 | | $\text{V+e} \rightarrow \text{V+e}$ | NC | 0.4 MeV | 840 | 840 | 840 | | $V+^{12}C \rightarrow V+^{12}C^*$ $^{12}C^* \rightarrow ^{12}C + V$ | NC | 15.11MeV | 110 | 220 | 380 | | $\overline{V_e}$ +12C \rightarrow 12B +e ⁺ 12B \rightarrow 12C + e +V _e | СС | 14,39 MeV | 20 | 30 | 45 | | $v_e^{+12}C \rightarrow {}^{12}N + e$ ${}^{12}N \rightarrow {}^{12}C + e^+ + \overline{v}_e$ | СС | 17,34 MeV | 50 | 75 | 100 | ### Diffuse SN Neutrinos Detection reaction: inverse beta decay $$\overline{v}_e + p \rightarrow n + e^+$$ - prompt signal from positron annihilation - delayed 2.2 MeV γ 's from neutron capture (τ ~ 250 μ s) - → good distinction from single events - Observation window: ~10-30 MeV limeted by atm. and reactor neutrinos - Expected events: 35-70 in 10 years - → spectroscopy possible if background under control Atmospheric and reactor electron anti-neutrinos (both location dependant): irreducible → define observation window - Cosmogenic ⁹Li, ⁸He - produced by cosmic muons - β-n emitter - mimick delayed coincidence signal ### Reduction technique: - energy cut, discarding 8He - combined spatial and time cut suppressing ⁹Li: veto a cylinder of 2 m around muon track for 1 s (>5T_{1/2}) - → residual ⁹Li rate of ~2% with a negligible dead time of ~ 0.1% #### Fast neutrons - produced in the surrounding rock by undetected cosmic muons - thermalization + n capture mimick IBD - Monte Carlo study performed in 2 steps - i) simulation of neutron energy and angle in spallation process (muon propagaion in limestone, <E> = 300 GeV @4 km.w.e.) - ii) simulation of neutron propagation in the scintillator #### **Reduction of fast neutrons** - rejection of multiple neutron events (30-40%) - fiducial volume cut: 0.2 events/yr for 10m - pulse shape analysis (p recoil vs e-like) reduces background to 0.12 evts/yr (with 12m fiducial volume) - severe background: NC interactions of atmospheric neutrinos - knocking out neutron of ¹²C: v + ¹²C → ¹¹C* + n - n thermalization + n capture mimick IBD - background reduction - tagging β+ decay of ¹¹C - 11 C*: deexcitation via emission of p,n, or $\alpha \rightarrow$ pulse shape analysis - Monte Carlo study performed (Genie and G4) - Small-scale experiments and MC studies indicate that effective reduction can be achieved ### Solar Neutrinos - Neutrino-electron scattering (low threshold) - → Good shielding required (≥ 4 km.w.e.) - High-statistic spectral observation and flux measurement - Search for temporal modulations with ⁷Be - \rightarrow 3 σ dicovery potential for amplitudes as low as 0.5 % for frequencies O(10min)- O(100y) - Precision test of the v_e survival probability in the transition region - Search for v_e → anti-v_e conversion - Test of SSM metallicity | Source | Channel | EW [MeV] | $m_{\rm fid}$ [kt] | Rate [cpd] | |------------------------|---------------------------|-----------|--------------------|---------------------| | pp | $\nu e \rightarrow e \nu$ | >0.25 | 30 | 40 | | pep | | 0.8 - 1.4 | 30 | 2.8×10^{2} | | pep
⁷ Be | | >0.25 | 35 | 1.0×10^{4} | | $^{8}\mathrm{B}$ | | >2.8 | 35 | 79 | | CNO | | 0.8 - 1.4 | 30 | 1.9×10^{2} | | $^{8}\mathrm{B}$ | ¹³ C | >2.2 | 35 | 2.4 | ### Geoneutrinos - $\bullet \overline{v}_{e}$ produced by U/Th decay chains, Ka - Detection reaction: inverse beta decay ~1000 events per year, location dependant #### Goals - measure abundance of ²³⁸U and ²³²Th inside Earth crust and mantle - quantify the radiogenic constribution to the total heat flux - help to understand geophysical processes and origin and formation of Earth - with a 2nd detector (like Hanohano): disentangle oceanic/continental crust Within one year error on total y flux in few % level # BSE model: @Pyhäsalmi 50 TNU @Fréjus 40 TNU ### Background: - Reactor Neutrinos - 9Li and 8He: muon-induced ßn-emitter - Fast neutrons and ¹²C(α,n)¹⁶O: each ~10 evts/year (MC) ### Geoneutrinos - After 5 years of measurement: Disentagnlement of contributions from U and Th in Pyhäsalmi - fixed chondritic U/Th ratio: ±20% with 5 σ ### Short-Baseline Neutrino Oscillations - Neutrino Oscillometry v_e - strong EC-source (MCi) close to detector with E = O(100 keV) (⁵¹Cr, ⁵⁷Se) - → sterile neutrinos - $\rightarrow \theta_{13}, \Delta m_{13}^2$ - Background: solar ⁷Be neutrinos | Nuclide | T _{1/2} (d) | E _v
(keV) | |------------------|----------------------|-------------------------| | ⁵¹ Cr | 28 | 747 | | ⁷⁵ Se | 120 | 450 | ### Short-Baseline Neutrino Oscillations ### Reactor Neutrinos v_e - 50-25000 anti $v_{\rm e}$ events per year, depending on detector site - anti- v_e disappearance experiment - precision measurement of solar oscillation parameters θ_{12} , Δm_{12}^2 - \rightarrow after 1 y: 3 σ error $\Delta m_{12}^2 < 3\%$ ### Pion at rest decay - Search for sterile neutrinos - Search for θ_{13} , δ_{CP} (compare Daedalus) # DM and OvBB #### Indirect Dark Matter Search: Neutrinos from DM annihilation/decay v_e - Detection via inverse beta decay - Regions with high Dark Matter density, e.g. in the galactic center - Assuming MeV DM, $< sv > = 3.10^{-26} \text{ cm}^3 \text{s}^{-1} / t_c \sim 10^{24} \text{ s}$ - Monoenergetic peaks ### • 0ν2β with 136Xe - 136Xe dissolved in the liquid scintillator - Solubility in liquid scintillator: ~ 2% in weight - → potentially 200 tons of active mass or more - High PMT coverage might be required Palomares-Ruiz, Pascoli, Phys, Rev. D77, 025025 (2008) # High-Energy Physics - Proton Decay - Neutrino beam - Tracking ### Proton Decay 400 - p → K+v (minimal SUSY SU(5)) $K^+ \rightarrow \mu^+ \nu_\mu / \pi^0 \pi^+$ - coincidence of K/µ provides clear signature - efficiency: 65% - background: atmospheric v's (creating hadrons) - Expected Rates in 10 years - current SK limit: 40 events - background: 1 event - no observation: $\tau_{\rm p} > 4 \times 10^{34} \, \text{yrs} \, (90\% \, \text{C.L.})$ - $\mathbf{p} \rightarrow \boldsymbol{\pi}^0 \, \mathbf{e}^+ \, (\text{GUT SU}(5))$ - Y-shaped shower signature, tracking needed ### **GeV Event Reconstruction** - Investigated in Monte Carlo simulations - Identification of energy, momentum and flavour For tracks > O(10cm) distortion of the spherical light front emerging from track Integrated charge distribution Muons First hit distribution (TOF corrected) ### **GeV Event Reconstruction** - Investigated in Monte Carlo simulations - Identification of energy, momentum and flavour - For tracks > O(10cm) distortion of the spherical light front emerging from track - More precise method: LogLikeli Fit to the integrated charge and first hit times of each PMT (7 par fit) / resolution [MeV] horizontal events ertical events 1.6 1.4 Energy resolution Muons # Long-baseline Neutrinos - Searching for θ_{13} , δ_{CP} , mass hierarchy, and check for maximal θ_{23} - Options currently investigated - Conventional v beam CERN-Pyhäsalmi (2288 km) - Appearance experiment: $(\overline{v_{\mu}}) \rightarrow (\overline{v_{e}})$ - Background due to NC π^0 production, further studies ongoing - Beta beam CERN-Fréjus (130 km) - discrimination of electron and muon by pulse-shape analysis: - → efficieny for muons: ~90% - → residual electrons: <1% - Will be investigated in LAGUNA-LBNO FP7 study # LENA Whitepaper #### The next-generation liquid-scintillator neutrino observatory LENA Michael Wurm, ^{1,2,*} John F. Beacom, ³ Leonid B. Bezrukov, ⁴ Daniel Bick, ² Johannes Blümer, ⁵ Sandhya Choubey, ⁶ Christian Ciemniak, ¹ Davide D'Angelo, ⁷ Basudeb Dasgupta, ³ Amol Dighe, ⁸ Grigorij Domogatsky, ⁴ Steve Dye, ⁹ Sergey Eliseev, ¹⁰ Timo Enqvist, ¹¹ Alexey Erykalov, ¹⁰ Franz von Feilitzsch, ¹ Gianni Fiorentini, ¹² Tobias Fischer, ¹³ Marianne Göger-Neff, ¹ Peter Grabmayr, ¹⁴ Caren Hagner, ² Dominikus Hellgartner, ¹ Johannes Hissa, ¹¹ Shunsaku Horiuchi, ³ Hans-Thomas Janka, ¹⁵ Claude Jaupart, ¹⁶ Josef Jochum, ¹⁴ Tuomo Kalliokoski, ¹⁷ Pasi Kuusiniemi, ¹¹ Tobias Lachenmaier, ¹⁴ Ionel Lazanu, ¹⁸ John G. Learned, ¹⁹ Timo Lewke, ¹ Paolo Lombardi, ⁷ Sebastian Lorenz, ² Bayarto Lubsandorzhiev, ^{4,14} Livia Ludhova, ⁷ Kai Loo, ¹⁷ Jukka Maalampi, ¹⁷ Fabio Mantovani, ¹² Michela Marafini, ²⁰ Jelena Maricic, ²¹ Teresa Marrodán Undagoitia, ²² William F. McDonough, ²³ Lino Miramonti, ⁷ Alessandro Mirizzi, ²⁴ Quirin Meindl, ¹ Olga Mena, ²⁵ Randolph Möllenberg, ¹ Rolf Nahnhauer, ²⁶ Dmitry Nesterenko, ¹⁰ Yuri N. Novikov, ¹⁰ Guido Nuijten, ²⁷ Lothar Oberauer, ¹ Sandip Pakvasa, ²⁸ Sergio Palomares-Ruiz, ²⁹ Marco Pallavicini, ³⁰ Silvia Pascoli, ³¹ Thomas Patzak, ²⁰ Juha Peltoniemi, ³² Walter Potzel, ¹ Tomi Räihä, ¹¹ Georg G. Raffelt, ³³ Gioacchino Ranucci, ⁷ Soebur Razzaque, ³⁴ Kari Rummukainen, ³⁵ Juho Sarkamo, ¹¹ Valerij Sinev, ⁴ Christian Spiering, ²⁶ Achim Stahl, ³⁶ Felicitas Thorne, ¹ Marc Tippmann, ¹ Alessandra Tonazzo, ²⁰ Wladyslaw H. Trzaska, ¹⁷ John D. Vergados, ³⁷ Christopher Wiebusch, ³⁶ and Jürgen Winter ¹ arXiv:1104.5620 97 people from 37 universities and institutes in different 13 countries! # Summary - Liquid scintillator is a very attractive detection target for a next-generation large-volume neutrino observatory - Proven technology: wealth of results from KamLAND and Borexino - Broad physics programme: Particle Physics, Astrophysics, Geophysics... - Wide energy range: sub-MeV to GeV - Growing community in the field: LAGUNA, LAGUNA-LBNO, LENA Whitepaper Thank you for your attention!